Radio Frequency Readout Device (RFRD)

May 1718 RFRD **Team Introduction** Aaron Haywood – Mehdy Faik Brandon Baxter Michael Miller Robert Buckley Kellen Yoder Vaughn Dorsey Kurt Turner Luke Myers

> May 1718 RFRD ^O

Project Overview

- Develop Multi-Purpose Remote Readout Device
- Specific Test Scenario: Street lamps across the United States
 - 4 8 bolts per lamp
 Thousands of lamps per state
- Problem
 - Need to test for tightness of bolts
- Clients
 - Dr. Qiao
 - Dr. Song

May 1718 RFRD ⁽⁾

Initial Objective Functional Requirements Read distance of 5 meters Passive RFID technology Only power available from energy harvesting Send sensor data from capacitive sensor Non-Functional Requirements Maximum cost of \$0.50/tag Size of tag on the order of millimeters Size of tag antenna on the order of centimeters

Defining Project

Research

- How does RFID work?
 - A reader sends a signal to a tag which siphons the signal for energy
 - The tag then modulates that signal and sends back a static packet
 - What do we need to change?
 - The tag to be able to read a sensor
 - The tag needs to be able to send back this sensor's variable data

Defining Project

Research

Limitations

- RFID technology we have access to is limited to a part of the Industrial, Scientific, and Medical (ISM) bands
- Bands Allowed: 125 kHz, 13.56 MHz, 900 MHz
- Maximum Output Power: 1 Watt
- What do we need to use?
 - From our research, 900 MHz is the only range which can reliably send over 5 meters, but it has issues
 - 900 MHz is too expensive to work with, we worked with our client and chose to use 13.56 MHz at the cost of possible distance

Team Division

 \bigcap

 \bigcirc

May 1718 RFRD ⁽⁾

Work Division

IC Objectives

- Split into two main objectives
 - Create a working prototype using discrete components
 - Design an IC chip in Cadence

Antenna Objectives

- Design antennas and rectifier
- Optimize power transfer

Reader Objectives

- Build a reader we can use to test our device
- Convert the antenna signal to usable data

Design Decisions

Tag Approach

Use a Parallel-In Serial-Out data system to output static and dynamic data

Control capacitor charging/discharging through a clock system

Antenna Approach

- Square coil antenna logistically easiest to implement and modify
- Near-field inductive coupling

Reader Approach

- Arduino chosen for better low level processing
- Direct connection to computer to simplify data transfer

Initial Breadboard Design

Test Results

Extremely noisy
Functionally operational at low frequencies

May 1718 RFRD ⁽⁾

PCB Revision A: Testing

Test Results

- Signal can be read at 2 4 inches with current antenna
 - Greatly reduced noise
 Modulation is needed
 Need component to turn input wave into a square wave

May 1718 RFRD ⁽⁾

PCB Revision B: Design

 \bigcap

May 1718 RFRD ⁽⁾

13/24

Controller

User Interface Cell Phone or Integrate Circuit

PCB Revision B: Testing

Test Results

 Signal can be read at 2-4 inches with current antenna
 Modulator and Schmitt Trigger implemented

May 1718 RFRD ^O

PCB Revision C: Design

Future Design Objectives

- Slight trace redesign to conserve space and further mitigate noise
- Use antenna input and a rectifier to generate power
- Improve modulator design

Integrated Circuit

Modulator

- Modulation prepares IC output signal (w/ sensor and ID data) for transmission between antennas
- Current design uses ASK modulation: data multiplied with carrier wave
 - Simple method for testing our IC tag
 - SA602A mixer chip took up minimal additional space on PCB Revision B
 - High levels of noise make long range transmission impossible

Future Design Objective

- Successfully implement backscatter modulation
- Explore possibility of utilizing FSK modulation
 - Avoid adverse effects of system/channel noise

Integrated Circuit

Cadence Design

- Majority of core components work
 - Data shifter, modulator, counters, capacitor sensor
- Components still being simulated
 - Comparator, memory, rectifier

Future Design Objectives

- Rectifier diodes we used are made in a special process
- Comparator using internally compensated Op-Amp

Power Harvester (1/2)

Power Harvester:

- Purpose: Generate enough energy from incoming RF to power IC for one cycle
- Design notes:
 - Must account for antennas' Z-parameters
 - Half-wave rectifier performed better than full-wave
- Below: Schematic from ADS Source pull simulation to determine optimal Z_S

			Vout_half
MLIN P_1Tone TL3 PORT2 Subst="MSub1" Num=1 W=100 mil 7=75 final L=100.0 mil	Image: 2 Image: 2	I_Probe MLIN hsm s_282x_model Id_rect TL2 X21 Subst="MSub1 _M=1 W=100 mil L=100.0 mil	C R C3 C=1.0 uF R=100 kOhm
P=1 mW Freq=incident_freq MHz	Z[1,2]=2.8442.j*225.5293 Z[2,2]=4.0483.j*3164.5104	· · · · · · · · · · · · · · · · · · ·	
	I29		
			May 17

RFRD

Below: Schematic mixed with hardware for clarity

• 50 Ω source > L-match > Antenna > Diode > Parallel RC

RFR0 Reader Reader Team Reader Team Account of the second of the seco

19/24

Antenna

Difficulty of Attaining Hardware Implementation

- Thin traces, characteristic is sensitive to geometry, and coupling is poor even in the best case
- Copper fell apart during waterjet cutting

Coupling Characteristic Shown (next slide)

- 11.2" x 11.2" (reader) to 3" x 3" (tag) square coils in ANSYS
- Poor coupling necessitates low power
- At this stage, electrical size is most significant performance factor

21/24

 \mathbf{Q}

 \bigcirc

Q

Reader Hardware

Design Factors

- The prototype is designed for 13.56 MHz, but should be scalable to 900 MHz.
- Class A amplifier
- LPF de-modulator envelope detector
 - Blocks 13.56 MHz carrier
 - Outputs high/low data string

Reader Software

User Interface

- Created using C# and
 Windows Forms
 Uses SQL Server for data
 storage
- Able to communicate with Arduino over USB

RFRD Control Applicatio	n – 🗆 X													
Cee-1														
RFRD Control Application														
Mode: O Normal														
Database Connection Info														
URL:	sdm1718.ece.iastate.edu													
Database Name:	rfrd_app													
Username	Username rfrd_user													
Password	Password ••••••													
Test DB Config														
Launch Now														

Movie and Questions

0

Video of the modulation working and sending across test antenna

May 1718 RFRD ⁽⁾

Sensor and Antenna

May 1718 RFRD 〇

 \bigcap

RFRD Project Spring Semester Timeline

Classwork Begins

Integrated Circuit Alternate Design Consideration • Capacitance Reading Chips with Microcontroller MSP430 G2x11 Microcontroller (\$0.51) Low power consumption, 8 GPIO Might be able to control up to 6 Capacitor Sensors MTCH101 Capacitor Sensor (\$0.38) Can only read every .5-.8 seconds in low power mode ■ May require 4+ per tag. Main reason for rejection: cost non-functional requirement

28/24

Cadence Schematic Shift Register and Data Simulation

May 1718 RFRD ⁽⁾

Cadence Schematic Counter & Parallel In Serial Out Data

May 1718 RFRD ⁽⁾

Cadence Schematic Cap Sensor Design

May 1718 RFRD ⁽⁾

Cadence Schematic Capacitor Reading Simulation

 \bigcap

·	•	•	• •	•	• •	•	•	• •	•	•	•		•	•	•	•	•	• •	•	•	•		•	• •	•	•	•	·		• •	·	•	• •	•	•	• •	•		· ·	•	•
•			· ·												•											•	•										•	-			
· .															•											•	•										•				
· .			· ·		· ·									•	•						•					•	•										•		· ·	·	
· .			· ·		• •						٠			•	•		٠				•		٠			•	•		• ·					٠			•		· ·	٠	
Ŀ.	•	•	· ·		• •	·	•	• •					•	•	•		•		•	·	·		•		•	•	•	•							·		•	•	· ·	·	
Ŀ.	•	•	· ·	•	• •	•	•							•	•		•		•	•	•	· ·	•		•	•	•	•			•	•		•	•		•		· ·	•	•
Ŀ.	•	•	· ·	•	• •	•	•	•	vdd					•	•		•		•	•	•	· ·	•		•	•	•	•			•			•	•		•		· ·	•	
· .	•	•	· ·	·	• •	·	·	·	•			· ·		•	•		•		•	·	·		•	• •	•	•	•	•			•				·		•	•	· ·	·	·
Ŀ.	•	•	· ·		• •	•	•	·]	•	•		· ·	•	•	•	•	•		•	·	·		•		•	•	•	•		• •	•	•		•	·		•	-	· ·	·	·
ŀ.	•	•	· ·	·	• •	·	·	· •	·	•		· ·		•	•		·	• •	•	·	·		·	• •	•	•	•	•		• •	•	•	• •	•	·		•	•	· ·	·	·
Ŀ	•	•	· ·		• •	·	•	·					•	•	•		•		•	·	·	· ·	•	• •	•	•	•	•	• •	• •					·		•		· ·	·	•
·	•	. Г			•						+				143	·	٠		•	·	·		٠	• •	•	•	•	•	• ·	• •	•		• •	٠	·	• •	•	-	· ·	٠	·
ŀ	•	·	· ·	•	• •	·	·	- 27	j.	•	•	• •		·	•	•	·	• •		•		• •	÷	• •	•	•	•	•		• •		•	• •		·	• •		•	· ·	·	·
are	e	·	 Chai	rae	 Īn	·	·	• •	•	Ca	зрV	alue	e<7:9	Ø>																	9 -								•	·	·
arc	e	·	Diec	han	ne I	n ·	Ca	pSe	nsòr	r '	•	• •	•	·	•	·	·	•	l ·	·	·	• •	.	• •	•	st.	•	· .	·	• •	·	·	· .	•	·	·	•	• ;	; ŀ	·	·
· _	•	·		- inging	20-1	· ·	·	·	•	·	•	• •	•	·	•	·	·	•	Ŀ	∆	·	· ·ć	8	• •	•	€Ŀ	•	÷÷	·	· 6	·	·	堂	•	·	-4	•	· É	≙∣ം	·	·
÷.	•	·	• •	•	• •	·	·	• 6	<u>л</u> .	•	•	• •	•	·	•	·	•	•	ŀ	₿	·	·	š	• •	•	ó ۱	•	-2	·	· 8	·	·	۰XI	•	·	·XI	•	· 2	st i	·	·
· .	•	۰L	• •	•	• •	•	•	· 3	š.	•	•	• •	•	•	•	·	·	•	Ŀ		•	• •		• •	•	· ·	•	.—	·		·	•	·	•	•		•	• •	· ·	·	·
•	•	•	• •	·	• •	·	·	·		·		• •	•	•	•	•	·	•	ŀ.	·	°CØ	• •	. * (01 1	•	· 🖷 ·	C2	· I	C3	• •	ΡÖ	4 [·]	· •	C5	·	1	C6	•	∶†ric	7°	·
÷.	•	•	• •		• ·	·	·	·	•	·	٠	• •	•	•	•	·	٠	•	·		≓°=	=20p	눘	c=9(₫р∘	*	c=3	^{iØ} P –	<u>↓</u> c=	8Øp ;	÷۲	:=4Ø	머႕	- e=	:7Øp	' 귀	- c =	:60p	,'	c≠5	Øp
•	•	•	• •	·	• •	•	·	· 7		•	•	• •	•	•	•	·	•	•	ŀ.	·	•	• •		• •	•	· ·	•	·	·	• •	·	•	·	•	·	·	•	•	· ·	·	·
· .	•	•	• •	•	• •	•	·	· T;	and	•	•	• •		•	•	•	·	•	Ŀ.	· •	ŀ	• •	÷.	• •	•	· 🖷 ·	•	· I	i ·	• •	<u>م</u>	·	· •	·	•	1	. •	•	· ·	·	·
	•	•	• •	•	• •	·	·	\triangleleft		·	•	• •	•	•	•	·	·	•	Ŀ.	·	·	• •		• •	•	· ·	•	•	· ·	• •	·	•	·	•	·	•	•	•	· ·	·	·
•	•	•	• •	•	• •	•	•	• •	•	•	•	• •	•	•	•	•	•	•	Ŀ	·	•	• •		• •	·	· ·	•	•	·	• •	·	•	·	•	•	·	•	•	· ·	·	·
355555							0.000000				100100.000									. 1						-			-		•		-						<u> </u>	·	·
·	·	•	• •	•	• •	·	·	• •		•			•	•	•	•	·		•	·	·		·	• •	•	•	•	•	•••		•	•	• •	•	·	• •	•	•	• •	·	·
															•		•	• •	•	·	•		•	• •	•	•	•	•		and	•		• •	•	•						
				·	• •	•	•	• •	•																					Aura											
			 	•	•	•	•				•				•		٠						٠			•			•	Z .				٠			•			٠	
			 		• •			· ·	•		•	· ·					•	 				 	•	 		• •			• <	- gina 7 - : 			 	•		 		•	 	•	
			· · · ·		• •			· ·	•		•	· ·					•	 				 	•	 		• •			•	gna 7 : 			 	• • •		 		•	 	•	

May 1718 RFRD ⁽⁾

Cadence Schematic Cap Charge/Discharge logic

33/24

RFRD